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est uniform

and is unique follows from the thecry of

with Haar subspaces; it can be calculated viz the standard

if one works on [0, b] with b sufficiently large. One the

approximations w to u(rAt) for r = 1, 2, ..., where w
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Due to the special form ¢f the denominator ¢f R _, w can

I + —A once and then g = W can be calculated by perf
forward substitution followed by & b d titu
addition, the matrix I + ——A will be a band matrix since
band structure inherited from the £

Thus : on it ted construct 5 5
numerical built ar 1 a "solutioa" 3 K; to €2

the inc
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for all x € [0, @]. Now, let us normalize Rk(x) by requiring that
m .
k (x 1 :
Qk(x) = I (qE )(x - ‘0\ + 1) where 0 < 4 ) i Note this can be
=y - ' =0
done since Q (x) is known to have all negative roots. Thus, if

Qk(x) = B(x-r.),p<mandr, <0 forall i =1, «eus P
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and note that v, < 0 implies that 0 < gs = ¥ o= for i = 1, s-vg D
D 0
Finally, the constant ( I (x. - ».)) is to be incorporated into P, (x).
. U 4 1S
i=1
Since f is bounded, we have from (2.1) that there exists a constant
M > 0 independent of k such that for all x € [0, ol
s = o
Zn2) -M < R (x) < M,
( < R <
2 (klm e A 1
Since {qg.}. .7, . € [0, —), we may sxtract convergent subsequences
L 4=l gR= o X

e - & #f =% a5 12 N A 1 .
to Q on co pact subsSets or tne 2al line. NOW (2.1) restr
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Procf: This result follows from

Theorem. Thus, one rms the system £ (3a) = 0, u = 1, ..., m + 1 where

= alea v 7 ! z z z Z
2 (pl’ N oS 9 P A NN —I"":i yli D ] ,"'r.la e “22’ 1.1', ey "‘f;’\’
m-=1 &
£ (a) = gy F s % By 2 ey 1) = ]
(2) 121 Pn? ), (qw, * ) zps W =1, ..., m, and
. : m-2 m-1
A 1 -~ u! — i
fmo+u(3) (qy!' + ‘)(:3 t ...+ (P-¢)?n(1u ¥ - malps # e pm(/') )
( ! 1)m+l U = 7 3} =
- Cqy! + 1 Z0s H= g m, . Observe that the point
a. = (Pys sees D ) EJ ';~ ceay W V. v R(y R(y,.),R" (7
20 b “m s ) 3!25 _ll, ) _;ml, ._l), . ey H.J.nz)p (‘ %
ot g R'(yim )) satisfies this system. Thus, since each function of this
system has continuous respect to each of the variables
of a (or components) need only prove that Jacobian, J(a), of the systen
with respect to p., ..., p_, @ has a nonzero de at a = a,.
2 5 m i <0
by using the equalities z; = and 2! = R'(y; ) and adding (n + 1)g
: 2
i th th J- =
times the V' row to the ¥ = row where p > m, and ¥ = v s det (J(a.))
“ =\ ‘-L;-T.Q J
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P(v
o ) & ‘\'1)
il 7 Wiolts i “my. ——= =
1 o “1(gv. +1)

ins th: - \ e L el Y9y " 15T ] - -
Assuming that 11 > C, replace ¥iy in the +1 by t and set G(t) eq
to the resulting function of t, Note that CE&€ T . and €(5F:. ) is dat{Jdi i
=1 b & ?
Define H(*) by H(t) is dat(J( Y otage 1S5t 3 Y )
fine H by H{t) ls det(J(a.)) with the m.+1 row raplaced by




({3t + 1), t(at + 1), +eey ¢

m-1
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v 3
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can have no more zeros. Hence, if we can show H £ 0 then 1
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13
which is our desired contradiction. Indeed, there are two possibiliries
2 i
to be considered.
CASE 1. y? <y® < ... <y® . In this case we apply Lemma 2.4 with
m, = 0 to P/Q with respect to these points (i.,e., y, of Lemma 2.4 is 'Eo
with y. of Lemma 2.4 set equal to Yiso M= e X, g Fixed, aad
J
z; = R(yi4), i= 1, sss, m + 1. Then, for j sufficiently large we e
<
that R. satisfies the conclusion of Lemma 2.4 (i.e., coefficients of R.
sufficiently close to respective coefficients of R and R.(y..) = z, with
4 g -
e = Y*f and [:. - R(y%)| small). But R also satisfies the conclusion
ij i i S
of Lemma 2.4 and since both R and R, € £ we have by the uniqueness of
; 5 ) !
Lemma 2.4 that R. = R.
J
his case we apply Lemma 2.
(a listing of the distinct
an s et Letring u.
A -
irst index v such that vy, *y. as k> o, 1 =1, .., m - 2 1
the first v sucl i > ! o, 5 s m -
vk i
we take the y. of Lemma 2.4 as y. .. (k fixed) and z. = Ry, .),
“usk i “pik
ma 2.4 as y* . (sse
Tia K
J
ZiE Ry s
| =K
J
12+l = Ty ¥ bl
e i -ds (S - %
-
&
Corollary 2.7. Suppese R(x) = P(x (=) = (;l t ees * poX W/ lgx # 1)V £
is a local he te £(x) from £_ on [0, o] and R is nondes
with @ > 0. Then, R is local upicus.
Corollary 2.8, If R(X) = (P, + ... P X" “)/(3x ¢+ 1Y€ £_ iz a best
a2 N LB —— .
approxiration to f(x) frem £ on [0,al, § el rate and q > 0, the:
£(x) - F(x) 1t least i lternat 2




m = 3 case, f(x) = e and
local approximations: Rl(

5002 x

with error norm 8.05002

o
=)
Fat
(0%}
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.
ro
o
(&)
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- 3

2.178, 6.876
IS

+ 2.52827x - .4u972x")/(1.

achieved at the extreme po

& - R,(x) > 0 at 0).

point equally spaced

V& NG
Vo LU9X
in+te 0
ints U

~my A

L014uT7x )/( ol I 54

+ 1)° with error norm 1.33720 x 10
.172, .872, 2,950, 13.226 (with

vsing the actual ad the
reme points in each agreaed to at least
s very likely that a

these two functions to shc

proximations ist for this problem.

o mz since the set of allowable coefficients is noct closed,
have
Theorem Z.9. Let ¢ > 0y m_, >0, and my * <o,

= - = M=l = L
a nondegenerate R(x} = (p, + ... + p_X g x + 1)

- wl -

with q, > 0 is a local best approximation to f & cto,
L o 3 ¥ ' ¢ > g BTy = BTy o Bl Yo
b1 G it B e . RO e LNy s i g v R - =S
m+g+l alterna y > nts. {1 1 = =, then we resuire {
Furthermore, it i ] ) ni .




The proof of this theorem requires only proving the analeg of Lemma

2.4 for 4 . This proof is more involved than the proof of Lemma
ml, .o ,;"1“‘

b

. : 4 o e 3
lines; the variable row of H(t) turns out to L&

2.4, but follows the

((q t+1)...(qpt+1),.. .t (q,t+1)...(q t+l), -mlr(qjt*l)...(?;"i7;':),
veny =M E(Q t+L). .60, E¥1DB(L))
b 1 ql _“-l ,),.
As two consequ s of this we note first that if a nond
e e R = Y h 211 & $ :
erate best appreoximation R to £ from X with 2ll denominator cocefficient
positive is such that £ - R has only m + 2 alternating extreme points,
then R €7f“; second, if a best approximation R tc from
i

~ 1 T+ TRl I PR~ LR ey Y - 13- N 3
g has all its denominator coefficients positive and distinct, then R is

actually the unique best approximation to £ from®{. [0, al = (R = I
i m N

P € Hr e Q € 31, Q> 0 ocn [0, a]}.

W wl

So far we have always ned the 1 rat pel mial to lie
3 Y- o raernlaca 11 s 1 v : 1
in Hm 1* °u we replace - 2¥ My and replac by n + 1 in all
expressions of alternating extr points, then everything
still goes through as long as n < mora <o, Ifn=mand a = o w
conjecture that the results still go through if lim f(x) ts a i

K
finite; in this case "='" may be an extreme point in the alternatlon thec: .
. -

3. Results for filx) = ¢ and g = »

In this section we describs the preceading thecry for the special

v AHak Y B anh B e L - s .

case that f(x) = e and @ = ®», It was this special case that motivated

this general study and a report on this special case can be found in [u].

By the preceedin

=X ’ I 3 v
to e on [0, ») from both ZZI « In addition, for the space f_ w
have an alternation characterization of local t approximations i

know that a local uniquenass result holds. As seen from the example at

1 & oo St7 3 7 - - § A -y .4 - :
the end of the previous section, we conjecture that there may exist move




than one local best appreximation in this case as well as at least one

global best approximation. Whether or not there is precisely crne global

best approximation is not known. Finally, we conjecture that there i:s a
s - =K e : 7 =

best approximation to om A which 1s actually in f;. In fact, we

. 3 S h ; 2 =% : ~
believe that each best approximation to e from % is in V.ol 5 4

L - LA ] P svrs s - o4 | AL - - -
one exists). We have proved this stronger statement
= - R e A D o X A o St
m= 2 [4]. Also, observe that the numerical results ort

this conjecture.

¥ seg, G ne ) qs%x + 1) and define ¥.{aq A X)
g(ql, s G ) (ﬁlz\ ) an e © g4y s wens By

m
= %l g.% + L) forx g
3‘;'21(4_1/ ) T
i#]
m
- Z q 3! ((« =
\)*}\J 115 Es ey =
v=1

is an approximaticn

approximati
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calculating

”f(x) = (po Ppx ot ...t ;mx“-l)/(qlul(il, wev'y

a a | RS B sonnt vav o e ( s W SRR ¥
+ wo(ql, vevs Qoo x))|| over a finite subset T of [0, al], with the rastric

0 < Qg 9 % v £ Q. X B8 (where B depends on the approximation desired).
P = = L e I
The ordering re: 4, £9, £ +e+ £ G were foun
- . o gy ‘

to obtain convergence. Observe that the denominator in
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precisely the linear

applied to the first m independent variables. The £ al
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the same approach; the linearized dencminator for this algorithnm is

5 |

qmx(gx + 5

+ [(1 - m)gx + 1(gx + 1)
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fairly fine mesh in order to

(99
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then card(T) will be large.

: ‘ . S
linear programmi problem and can cause storage pr in the differ-

ential correction algorithm we used the Remes-Difcor ithm [3] for
calculating This algorithm applies th
differential correction algorithm tc certain small of T chosen
in such a manner (depending on alteraaticn) that cocnvergence to the
solution on T occurs. Thus, we had no a priori guarantes that this would
work since a standard alternation thecry has not been loped for thi
problem; however, in both i d converg
and we obtained ajpr 1
precise study of th ure ‘tt
the K; algorithm will cenverge (assuming the convergence cf the inner
iterations) if the initial guess for the nt is
sufficiently gocd. We make no such conjecture for th &l algorithm
m

as presently consti e if Ei = Ei+l at some stage, then
wi(al, wey im, x) = Ul+l(il’ s 57, X), and the 7y and qi+l at the
next stage will not be uniquelv determined. In practice the Remes-Dif
algorithn 3 and 13, @t the next stage <o that either q; =
(or q; = 0 if 1 = 1) or Q74 * Qppp for qp, =8 if i =2 m - 1),

As an example; consider the probiem of approximating the functiom

N 4

£f on [0, 20] by functions of the Form grmmm—m— e e i




f is defined by

o
A
x
| A
,_..

£f(x) =

in the numeratsor by
- mArAYyAaAn s +¥
In accordance with
there were fiv
Q = A A s
8, 1T and Vg wit
:
\ R (O = 1. 006CONO0 A s = T 3 s |
£(0) - ri',) = 1,000 000. This was obtained using the actual dencminatec: :
P il L . W Wl = ¥
COCL T LACICHES Cile AN al )? s GUSing LIS < 1 =
§ g S5 e initial guess g, 3
B 3 3 - - iy - e . ’ .
ap q3 = 0.55 produced q, = .24637, q, = q4 = .502 after ene iteraticr
o 2 ‘3 - .
- M = o = 2EN - v~ ~ A & Tty
I 3 39, ; 22 s Q3 i 00, the foll 2
T T R e e X i R s i
y = 31250 g. 5 62500 t 2 rithm failed
5 iy v g
i L A ‘s . i
T ¥ 1 P, ~ _ - - - s ~ -
» in 3 ithm for 12 iterat
. . . " oy - . | - - > -~ ~ 2 -
with initial guess g, = 0.1, @. = 0.4, q. = o q
i < ¥
Tomed e 1A v . ’ g §
obtained the local best approximation (%) e
2 g + 3
ctrem: inte wara 0O { 3 16 nd ) ek &0 R ! = 1 AnAann -
the extreme points were 0, 4, 8, 16 and 20 with £(0) - R.(0) = 1.000002717.
P4
1an - gy 1 < - & ra g S ) 7 - . . .
We also approximated th ame £ on (0, 20] using the £ algorithm wit
= sanlanine . e SR s S 7Y ke s 0y B e
m 3, again replacing M. in the numerator s« Using either initial
2 1
S Y e WPy 3 D s P . = ~ ~o2 .
guess q = 0.2 (this required iterations) or q@ = 0.6 (6 iterations) we
. . . ”\‘\"
obtained the loc¢ } roximati () = 2 .
. 3
3 s
alternati tY t Y ‘ N i (4) (Y )= [
1t ’ - i 1t . - R,(4)==],

R P I ST —



Using as initial guess g = 1.4 (8 iterations),

1
"

o

w
>~~~
[
p-
b
rt
i |

W

[
pee
0

]

P

~
-

qQ = 4.0 (8 iteratio:

Q
-
(0]
~
-
Mo |
1"
{o3]
(&
o
o
| ol
ot
13
"
[
t
boe
o]
-
(6]
~—
O
b
£l
"
‘
3
~

we obtained the local best approximation R (x) = T . 3

: :
the alternating extrems points were 0,
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3, Compute the constant 6f geometric convergencs
PR N T S T R ~} s SR = 2
on {0, °°), that is,; find q > 1 such that s ﬁ.




alterr

o

-

rad T'

Sl

p—
e
= L~ baedd
?
R
54 a ._:
-~ & o] tn 5.
kS + 4 (=t i D
bt 0 =] < 5
(184 W e oy
LT )] L4 =
o = e 0 =*
(5] 0] s L
O 0] (&4 4 $4
e Q) - 4 O o
(L (4} 3 8" ] (o]
ol & 0 % o
v 4! o ) m
(8] £ o g 1<
Ex Q) Q (91 49 b}
L)) O () £ = ) Ci
4 (%) apd Uy dq Che > v
{Ja ~ o
& I o) £ .
o) 8 o} [ ; 0 0
> ) 4 e ard
Q 1l L) 4 . <
\ & 4 4
1 3 .-t (4]
(& ol ) 1% s
fu e Gy o O )
£ o "
[} O = ] 4]
O C) 54 a 1
Q £ Do, Uy —f
4+ = Q (8] =
o Al 0 v} o 0
£y i 2 42 (€] == Y
1) o (6] (%] o d S
i < o)
Q [ 1 | O = G
i) D Ce (= + ) L
U A —~ e} - = o
o z o = ) . 4
[64) (@) s i Yy
) [ = J @] b o © &
o O (o] = W .
- o s3] g 4 U}
(®] - 42 o [} |3 0n ° £
Q [19] © 4 (0} Q = ]
o 0 @ Yy ) o) — o ")
$+ ord 15 [ .l ) [} Yoy O 5 =
a 4 W (o N 43 v b ~ A D
£ £2 ) ) Uy 42 e~ O i) 54
. £ it} o o] o %) 4 —~ G
X (s3] 1 LY o o2 - hi) 23 &
9} 4 o~ 4 + @ £ ey o) ) . Q =
£ ol o~ e 72} + + c e — =
[ 1 a, —~ {14} Q ~ Q =3 [} o -4
Cy A2 v} ) ) F) 3 ot )
(3] + + E g o ] (&) oy | 3 o
~ n o @ (] £ 0 =
42 ~4 ol e (1o} 42 + L 0 (o] > [}
(7] la, 1o @© Q [ u (=} o] (W) = = Y
] ~ &= (0] ] £ 4+ (o] 4 — Q © S
Q u [ — - = T Q [0} ) Q0 pe o) <5

Finaliy, i




8]
ol
v
)
(4
-
[
|
-
£ 4
Q =
14

Lau, Te
pre

x€x

Department

o &
ey

)
3 e~
: (@)
e
sed
e}

-

[
Ly
o
']
ot
(G T o




